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LEITER TO THE EDITOR 

Non-algebraic domain growth in random magnets: 
a cell dynamical approach 

Sanjay Punt$, Debashish Chowdhurytt and Nita Parekhf 
7 School o f  Physical Sciences, Jawaharlal Nehru University, New Delhi, India 
t- Institut fiir Physik, Johannes-Gutenberg Universi t l  Mainr, 6500 Maim I, Federal 
Republic o f  Germany 
$ Institut fiir Tbeoretische Phyrik, Univeni t i t  zu K61n. 5000 K61n 41, Federal Republic 
of Germany 
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Abstract. We develop a novel numerical approach, based on a computationally efficient 
cell dynamical system (c1x) model, for studying the kinetics o f  ordering in systems 
(described by a non-conserved order parameter) with quenched disorder, evolving from 
unstable initial states. We use this model to study the kinetics of domain growth in a 
coarse-grained version of the random exchange king model. Our numerical data strongly 
indicate qlimlilnlive agreement with the theoretically predicted asymptotic growth law 
over a limited range of disorder amplitudes. We also compare our observations with those 
in laboratory experiments and make important predictions regarding dynamical scaling in 
these systems. 

The kinetics of growth and pattern formation in spatially extended systems has been 
an active field of research over the last few years, not only because of the practical 
implications in metallurgy and materials science, but also because of the fundamental 
importance of the ‘universal’ growth laws and ‘ubiquitous’ dynamic scaling exhibited 
by these processes; for reviews, see [l]. Computer simulations have played a crucial 
role in elucidating the nature of such growth processes. Several interesting results have 
emerged for the first time from the computer simulation of model systems and many 
theoretical predictions have been verified by such computer experiments. In principle, 
it should be possible to observe the asymptotic growth laws through computer simulation 
provided (a) the true asymptotic regime is attained and (b) sufficiently accurate data 
over a wide enough time interval in this regime can be obtained within the available 
computer time. However, in practice, it is extremely difficult to fulfil these conditions 
using the conventional Monte Carlo ( MC) techniques; the complexities involved have 
been discussed in detail elsewhere [Z]. Computationally efficient modelling using 
coarse-grained cell dynamical system (CDS) models [3], first developed to study phase 
ordering in two-phase systems, has been applied successfully to many other similar 
problems 141. In this letter we propose, for the first time, a non-trivial extension of 
this technique to deal with systems with quenched disorder and use it to study an 
outstanding growth problem in random magnetic systems, where the conventional MC 

method has had only limited success. 
Conventional MC methods use the single spin-flip kinetic king model (king model 

with Glauber kinetics), which serves as a reliable model for investigating dynamical 
processes in many magnetic insulators. Investigation of ordering kinetics involves 
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quenching the d-dimensional spin system from the high-temperature paramagnetic 
phase to a temperature T well below the co-existence curve and monitoring the 
characteristic domain size ( R ) ( f )  as a function of time 1. It is well known [I]  that the 
domain growth in the pure king model is controlled by curvature-driven interfacial 
motion which leads to the growth law ( R ) ( f )  - f”*  (known as the Lifshitz-Cahn-Allen 
or LCA law). Quenched (immobile) disorder is introduced into the pure king model 
by either randomizing the strength of the spin-spin exchange interaction (i.e. random 

(i.e. random field king model or R F I M  [ 6 ] ) .  In this letter, we focus our attention on 
the case with random exchange. At late and intermediate times, domain growth in the 
king model with quenched disorder proceeds through thermally-activated hopping of 
the interface over energy barriers put up by the disorder. Let us denote the barriers 
against movement of interfaces at length scales ( R )  by E ( ( R ) ) .  Assuming that E ( ( R ) )  

iaw fOi ;he 
characteristic domain size 

;sing mo& REi-M i;j; oi ;y iniroduciiig siie-depei,deni random fieid 

sia:is .i*ith ?I powei of (@, Huse an& Heii:iy7 ob:aineb a 

R( f ) - ( ln  t ) “ .  ( 1 )  

Moreover, relating x with two other known exponents for the REIM,  HH predicted that 
x is a universal quantity in the same sense as the other dynamic criticial exponents. 
C.cs, in this scenario, !he csy~ptc!k grow!h !a- Fer the ~5:p.q is give:: by {!), -here 
x depends on the dimensionality of the system but is independent of the temperature 
T and the actual amount of disorder. For example, x = 4 in d = 2. It is worth mentioning 
here that, in weakly-disordered systems, the interfacial curvature (rather than thermally- 
activated barrier hopping of the interface) is the rate-limiting mechanism of domain 
growth in the early stages. Consequently, a crossover froma power-law growth regime 

time. Eventually, the domains ‘freeze’ after attaining a temperature-dependent 
maximum size because the barriers on longer length scales are too strong to be overcome 
by the available thermal energy. (Although, in principle, domains can keep growing 
for ever at any non-zero temperature, the growth becomes so slow beyond a certain 
temperature-dependent maximum that, for all practical purposes, domains appear to 
be ‘frozen’ after attaining this size). Although the numerical data from the eartier 
Monte Carlo simulations [SI are in qualitative agreement with this scenario, a more 
recent attempt [9]  to determine the exponent x turned out to be inconclusive mainly 
because of the scarcity of sufficiently accurate data over a wide enough interval of 
time in the asymptotic regime. Although the onset of the crossover to the logarithmic 
growth regime can be quickened by putting in stronger disorder ones does not get data 
over a wider interval of time becuase stronger disorder also leads more quickly to 
‘freezing’. Besides, it has recently been pointed out [lo] that further‘subtle effects are 
introduced by the self-similarity of the structure in the presence of strong site-dilution. 
Thus, it seems that conventional MC methods would not be very successful in under- 
standing the quantitative aspects of the problem. Therefore, in this letter we develop 
a CDS model, which is essentially a coarse-grained version of the R E I M .  We study the 
asymptotic domain growth law in this model and find i t  to be in accordance with the 
predictions of HH, albeit over a limited range of disorder. Moreover, to our knowledge, 
no attempt has been made so far to check the validity of dynamical scaling [l] in 
systems with quenched disorder. Our numerical results indicate that dynamical scaling 
holds for our cvs model and the form of the universal scaling function is independent 
of the amount of disorder. 

to the asymptntic !ogarithmic growth regime is expected as the rlemains grow with 
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We start with the time-dependent Ginzburg-Landau (TDGL) equation, which 
describes the temporal evolution of a system described by a non-conserved order 
parameter (e.g. a coarse-grained version of the pure lsing model with Glauber kinetics 
[111) 

In (Z) ,  +(r, 1) is the scalar order parameter a t  point r and time 1; and L is a 
phenomenological parameter. For the pure Ising model, the coarse-grained free-energy 
functional H[Jl(r,,f)] in (2)  is usually taken to be of the q54-form, namely, 

g K t)’+-@(r, 4 f)4+-(VS(r,  2 1))’ (3) 

where r, g and K are phenomenological constants which measure respectively the 
temperature T ( r  - (T ,  - T), where T, is the critical temperature), the coupling constant, 
and the interfacial energy. The Gaussian white noise u(r, f )  satisfies the fluctuation- 
dissipation relation 

(4) (u(r, f)u(r’, 1‘)) = 2TLS(r - r ‘ ) S ( l  - f’) 

where we have taken the Boltzmann contant t o  be unity. The TDGL equation correspond- 
ing to the free-energy functional (3) (usually referred to as model A [12]) is then 

For the case of the REIM, the coarse-grained free-energy functional is usually taken 
to be of the form” 

K ( r )  H[Jl(r, f ) ]  = I dr( -* +(r, t ) ’+m 4 +(r, t)‘+-(V$(r, 2 1))’) 
2 

so that the phenomenological measures of the various parameters assume a spatial 
dependence. The spatial dependence is of the form of a random Gaussian fluctuation 
about a constant average, e.g. r(r’) = ro+Sr(r) ,  g ( r )  =g,+Sg(r), and so on. Then, the 
TDGL equation corresponding to (6) describes the dynamics of the coarse-grained 
version of the R E I M .  (This conclusion is supported by a derivation of the coarse-grained 
kinetic equation by applying the master equation approach [ 111 to the R E I M  [ 141.) For 
simplicity, we confine ourselves to the case where the interfacial energy is not spatially 
varying, i.e. K ( r ) =  K. This restriction only affects the precise form of the interface 
between domains and does not change asymptotic results, which are independent of 
the precise form of the interface. Thus, we consider the TDGL equation 

w- - ~ ~ , , ~ , W , ~ , , , ~ L i \ . , W \ . , , ,  r r - , - , . r . , -  I \  ~ - 1  -,.I. I -  .\31 I .\I Y n 2 , l . l -  W,,,;)j+c+,;). ( 7 )  
J f  

Equation (7) describes the temporal evolution of the coarse-grained version of the 
R E ~ M  which we consider in this letter. We will only consider the physically interesting 
case where r ( r )  and g( r )  are positive at all points so that the homogeneous system is 
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thermodynamically unstable everywhere. Of course, the local minima of the order 
parameter will now be spatially varying functions. We can cast (7) in a dimensionless 
form by scaling as follows: 

The corresponding dimensionless form of (7) is (dropping the primes) 

m= [I +Sa( r ) ] + ( r ,  t )  -[ 1 + Sb( r ) ] $ ( r ,  i)’+V2$( r, t )  +& p ( r ,  1) (9) 

where 8 a ( r )  = ST(r ) /To and 8 b ( r )  = Gg(r ) /g ,  are random Gaussian fluctuations about 
zero, !n (9); E = ~ , ~ , T T , ~ ( T ~ ! K ) ~ ’ ~  and u ! r 3  t )  is a Gaussian noise satisfyins 
(+( r, t )+(r ’ ,  1 ’ ) )  = S( r - r ’ ) 8 (  t - t ’ ) .  

The prescription for deriving a computationally efficient CDS model for a reaction- 
diffusion equation like (9) has been discussed extensively in the literature [ 3 , 4 ] .  
Essentially, the procedure consists of integrating the deterministic local part of (9) 
(i.e. equation (9) without the diffusive and the noise terms) and using the solution of 
the deterministic local part to write down a CDS model for (9) .  The advantage of this 
prescription is that it enables the use of much larger mesh sizes than are possible with 
the conventional Euler discretization schemes. We do  not go into further details of 
this procedure here. Rather, we directly write down the resultant CDS model, 

a i  

(10) 
At 

=GSlL(r, t))+m A D $ ( r ,  t )+&At+(r ,  t )  

where At and Ax are the mesh sizes in time and space respectively, and 

a ( * ) =  A ( r )  = exp[(l + & a ( r ) ) A t l .  

In (lo), A, is the isotropically discretized Laplacian at the discrete lattice point r. 
Using the robustness of cell dynamical modelling and the insensitivity of results to 
the precise form of the local relaxation function [ 3 ] ,  we replace the function G , ( x )  
by the piecewise linear function 

This piecewise linear function ensures a more rapid relaxation to the local fixed points, 
thereby enabling quicker access to the asymptotic regime. Thus, we have the required 
computationally efficient CDS model 

( 1 3 )  

where the time is incremeneted in discrete steps; D = A ~ / ( A x ) ~ ;  and B = Ai&. This 
is the model we have used to obtain the results described in this letter. There are five 
parameters in this model, namely the constants &(=eA‘) and D ;  the noise amplitude 

$ ( r ,  t + l ) = J . ( + ( r ,  f ) ) + D A D $ ( r ,  t ) + B d r .  f )  
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E ;  and the amplitudes of the two disorder terms So(r )  and 6 6 ( r ) .  The choice of 
parameters is dictated by the requirements that (a) the scheme (13) be numerically 
stable; and (b) the results obtained be reasonable [3]. In this letter, we use the parameter 
values A,= 1.3 and D = 0.125. These parameter values have been considerably success- 
ful in elaborating the dynamics of ordering in the case without disorder [3]. Before 
we proceed, some discussion of this choice of values for A, and D is in order. 
Essentially, the values of A, and D affect only the width of the interface between 
domains and not the bulk of the domains. Asymptotically, as we have remarked earlier, 
the width of the interface (which is constant in time) is an irrelevant variable compared 
with the characteristic domain size (which grows in time). Thus, the only effect of the 
interface width is to introduce non-universal features in the scaled structure factors at 
early times. Asymptotically, scaled structure factors are independent of the interface 
width and, consequently, independent of the values of A, and D. This has been 
confirmed for the case without disorder [3] and we have also verified it for the case 
with disorder, though we do  not present detailed results here. The asymptotic results 
presented below are independent of the values of A, and D over a broad range of 
values [3]. Details will be provided in an extended publication. 

The choice of the noise amplitude raises a somewhat delicate question. In the case 
of ordering in pure systems, noise has been shown to be irrelevant for the asymptotic 
domain growth law [3]. However, as explained above, the HH prediction is based on 
the argument that growth in the presence of quenched disorder is driven by thermally 
assisted hopping of energy barriers. Therefore, we must consider the case where the 
noise amplitude (which mimics thermal fluctuations) is non-zero. Even the determinstic 
case gives rise to non-algebraic growth but this should not be quantitatively compared 
with the HH prediction, as it is not clear whether their scenario applies. Furthermore, 
as we show later, the patterns freeze rapidly in the deterministic case. Numerically, 
we choose the noise to be uniformly distributed with an amplitude B=O.2,  unless 
mentioned otherwise. (Results similar to those presented here are obtained for other 
reasonable noise amplitudes and a Gaussian distributed noise. We do not present these 
results here.) Finally, for simplicity, we consider only the case where the amplitudes 
of Sa(r')  and S h ( r )  are equal. We have considered both uniformly and Gaussian 
distributed disorder. The results obtained are similar and all results presented here are 
for the case of quenched disorder uniformly distributed between -C and +C,  C being 
the amplitude of the disorder. 

At this stage, we examine the physical implications of our parameter values. Recall 
that we had rescaled the TDCL equation (7) to arrive at the dimensionless form (9) 
and all parameters will have to be interpreted in  terms of this rescaling. First, we 
consider A, and D, which are related to the mesh sizes in our new discretization 
scheme as A,,= e'' and D E  A1/Ax2. The mesh sizes correspondink to the values A,,= 1.3 
and D = 0.125 are AI = 0.26 and Ax = 1.45. These values are unreasonably large for a 
conventional simulation of the corresponding partial differential equation and can 
only be justified in the context of cell dynamical systems [3]. Next, we consider the 
role of the noise parameter E, which we have already discussed partly. Clearly, the 
amplitude of noise should not be so large as to destroy the local domain structure. 
Noise amplitudes E sO.4 are reasonable and give well-formed domains. Finally, we 
discuss the disorder amplitude C. Typically, a disorder amplitude of C =0.30 corre- 
sponds to a maximum variation of 0.37,) in the local temperature variable T ( r )  or a 
maximum variation of 0.3g0 in the local coupling variable g ( r ) .  These fluctuations are 
physically reasonable in the context of experimental systems. 
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We have implemented the scheme (13) on a 128 x 128 lattice with periodic boundary 
conditions. The quantity usually calculated is the time-dependent structure factor, 
which is defined as 

where $(k, f )  is the Fourier transform of ~ ( r ,  1 )  on the discrete lattice; the angular 
brackets denote an averaging over different initial conditions and then different disorder 
configurations; and the * denotes complex conjugation. The wavevectors k take up 
the discrete values 27r(kx, ky)/128, where k, and ky range from I to 128. For each 
fixed configuration of disorder, we obtain structure factors as averages over 20 different 
initial conditions. Then, we average over (typically) 20 different configurations of 
disorder. The time-dependent structure factors are circularly averaged to give the scalar 
function S(k, I), which will be shown in subsequent figures. The characteristic domain 
size ( R ) ( t )  is defined as the reciprocal of the first moment of the scalarized structure 
factor ( R ) ( r ) = ( k ) ( f ) - ’ ,  where ( k ) ( r )  is defined as 

where k, is the magnitude of the largest wavevector we consider. The results presented 
here are for k, equal to half the magnitude of the largest wavevector lying in the 
Brillouin zone of the lattice. The characteristic length scale thus measured is in units 
of the lattice spacing. 

Figure 1 shows the square of the characteristic domain size, ( R ) ( r ) * ,  as a function 
of time f for four different values of the disorder amplitude C( =O.O, 0.30, 0.35, 0.40) 
and the noise amplitude B = 0.2. The data for the pure system (corresponding to 
C = 0.0) obey the LCA growth law (R)(r) - f”* up to a time of about IO00 units. After 
that, finite-size effects affect the accuracy of our data [3]. We will take (R) , -20  as an 
approximate cutoff beyond which we expect our results to be affected by the finite size 
of the system. Thus, we present here only data (for both pure and disordered systems) 
with (R)( f ) -cZO.  Figure 1 shows that the data for the disordered case cross over from 
a power-law growth regime to a slower growth regime; the stronger the disorder, the 
quicker the onset of crossover. The qualitative features of the data are similar to the 
corresponding features seen in earlier MC simulations [S, 91 of the m i M .  In figure 1 ,  
we have shown results only for optimal values of disorder. For lower values of disorder, 
the growth law is indistinguishable from a LCA growth law for an extended period of 
time and then finite-size effects hamper the observation of the slow growth regime. 
For larger values of disorder, freezing occurs too quickly to exhibit an extended growth 
regime. 

To check whether the HH prediction (equation (1)) is valid for our coarse-grained 
model, we have plotted ( R ) ( f )  versus (In 1 )  [4] in figure 2. Clearly, (R)(r) does not 
go as (In I ) ~  for early times. This is as expected because the early time behaviour is 
dominated by curvature effects which give rise to a LCA growth law. For intermediate 
and late times, the data for C = 0.30 supports the HH prediction. However, the data 
for larger values of disorder (namely, C = 0.35, 0.40) are in agreement with equation 
(1) only over an intermediate regime of time. The deviation from (1) in the later stages 
does not necessarily imply any breakdown of the form (1); the true asymptotic growth 
for these stronger disorder values may have been masked by the dominating effects of 
freezing. Nevertheless, our data in this figure stongly suggest that the HH prediction 
would hold in the true asymptotic regime. This, we believe, is the first strong evidence 
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Figure 1. Square of the characteristic domain length, (R) '  plotted as a function of lime I 
for disorder amplitudes C =0.30, 0.35 and 0.40 (denoted by the symbols indicated). For 
comparison, we also plot ( R ) *  versus I (denoted by circles) for the pure system cotrespond- 
ing to CO.0. The noise amplitude is always taken 10 be B = 0 . 2 .  

0 1 0 0 0  2000 3000 4000 

1 ~n t I 4  
Figure 2. Characteristic domain size ( R )  versus (In 1)' for the data from figure I 

in favour of the theoretically predicted asymptotic growth law, albeit over a limited 
range of disorder values. 

In figure 3, we show the domain growth for deterministic systems (B=O.O)  with 
the same disorder values as in figure 1. The onset of freezing is much quicker than 
that in case of growth with noise. However, the forms of these curves are qualitatively 
similar to that of the curves in figure 1; the stronger the disorder, the quicker the 



L1094 Letter to the Editor 

N 
A 

[Ir: " 

I50 

100 

50 

0 . 0  
0 . 3 0  
0 .  3 5  
0 . 4 0  

0 

0 1000 2000 3000 

t 
Figure 3. Square of the domain size, (R)' ploued as a function of time I for the same 
disorder amplitudes as in figure 1 (denoled by the symbols indicaled) but in the absence 
of noise ( E  = 0.0). 

freezing. For smaller values of disorder, growth is seen over a somewhat larger period 
of time but it is not at all in accordance with the H H  prediction. As pointed out earlier, 
this data should not be interpreted in terms of the H H  prediction, because it is not 
clear whether their scenario applies to this case. 

So far we have attempted to test the theoretical prediction of Huse and Henley 
[7]. Now, based on our simulation, we make some further predictions regarding the 
universal features of domain growth in random magnetic systems. We have tested for 
dynamical scaling by plotting (for different values of C )  S ( k ,  r)(k)' versus k / ( k )  for 
different times. If dynamical scaling is valid, the data should collapse onto a single 
master curve. We have confirmed (results not presented here) that dynamical scaling 
is valid for all values of C considered here. Furthermore, the universal functions 
obtained in this fashion are independent of the amplitude of disorder. This is shown 
in figure 4(a), where we plot S ( k ,  t ) ( k ) 2  versus k / ( k )  for data from C =O.O ( I  = lOOO),  
C=0.30 (t=1000), C=O.35 (1=3000),  and C=0.40 ( f=3000) .  In figure 4(b), we 
plot In(S(k, ~ ) ( k ) ~ )  versus k / ( k )  for the data from figure 4 ( a ) ,  indicating that the 
universal functions agree even in  the tail regions. The independence of the universal 
function of the amplitude of disorder should be observable in laboratory experiments. 

Finally, let us compare and contrast our results with the corresponding experimental 
observations. To our knowledge, there is only one such experimental work [ 151 reported 
in the literature and it does not support the H H  prediction. The experiment has been 
performed on Rb,Co,Mg,_,F,, which is a well characterized (effectively) two- 
dimensional antiferromagnet where strong anisotropy gives rise to king-like critical 
behaviour. Nevertheless, the domain walls in the latter system have a finite thickness. 
In our cell dynamical simulation also, the system has soft walls which harden (relative 
to the characteristic domain size) with the passage of time. Therefore, the system in 
our computer experiment is not very different from the real system studied in the 
laboratory experiment. However, there are at least two important differences: 
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Figure 4. ( a )  Plot of S( k. r ) ( k ) 2  versus k / ( k )  for the data from disorder amplitudes C = 0.0 
(r=lO00), C=O.30 ( I = I O O O ) ,  C=O.35 (1=3000) and C=O.40 (1=3000). Thedifferent 
disorder amplitudes are denoled by the symbols indicated. The noise amplitude is always 
taken to be B=O.2 ( b )  Data from ( a ) ,  plotted an a semi-lag scale. i.e. In(S(k. O ( k ) ) ' )  is 
platted against k / ( k ) .  

(i) The disorder enters the laboratory system through random site dilution (i.e. 
random substitution of the magnetic ions by non-magnetic ones), whereas the concepts 
of site and bond do not have any clear meaning in the coarse-grained picture of the 
cell-dynamic approach. 

(ii) Since p in the samples used was very close to the corresponding percolation 
threshold pc, the growth process was strongly affected by self-similarity of the underly- 
ing structure [lo], whereas no such fractal effects influence growth in our cell-dynamic 
formulation. 
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Of course, it is difficult to be certain whether or not the laboratory experiment 
could really probe the asymptotic regime. Therefore, the disagreement with the predic- 
tions of H H  and our numerical results may also be a consequence of the experimental 
results being in the crossover regime. We urge experimentalists to perform longer-time 
experiments and also to check for the validity of dynamical scaling. 

We would like to end our discussion with a philosophical note on the recent rends 
in numerical methods in statistical physics. Recently, it has been possible [ 161 to resolve 

REIM by using the various efficient non-local (cluster) algorithms [I71 developed 
specifically for this purpose over the last few years. We have suceeded here in throwing 
light on the dynamical behaviour of a coarse-grained version of the REIM by using 
another non-local algorithm developed specifically for such studies. 

SP and DC would like to thank K Binder and D Stauffer, respectively, for warm 
hospitality at Mainz and Koln. We also thank D Stauffer for useful comments and a 
critical reading of the manuscript. This work is supported in part by the SFB 262 (to 
SP) and the Alexander von Humboldt Foundation (to DC). 
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